September 2022 Problem of the Month

A sphere with radius $r_0 = 10^{-18}$ meters fits inside a quark which is currently the smallest particle known. We circumscribe a cube around this tiny sphere. We then circumscribe a sphere around the cube and call its radius r_1 . We then circumscribe a cube around the larger sphere with radius r_1 and then circumscribe a sphere around this cube and call its radius r_2 . We keep repeating the process of circumscribing a cube and then a sphere in that order. The radius of the *nth* sphere is defined as r_n . What is the smallest value of *n* where the radius of that sphere is larger than the radius of the observative universe of 4.4×10^{26} meters? Please email solutions to Dr London at <u>slondon@luc.edu</u> in PDF form by 11:59pm on September 30.

